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Quasilinear QMV Algebras 

R o b e r t o  G i u n t i n i  ~ 

Received October 18, 1994 

We investigate quasilinear and weakly linear QMV algebras as a generalization 
of the algebraic structure of all effects of a Hilbert space and we study the 
varieties generated by these classes. Finally, we prove some results concerning 
locally finite and Archimedean QMV algebras. 

I N T R O D U C T I O N  

QMV (quantum MV) algebras were introduced in Giuntini (n.d.) as a 
generalization both of MV (multivalued) algebras and of the structure deter- 
mined by the class of all effects of a Hilbert space. In this paper we will 
investigate some structural properties of the QMV algebras based on effects 
(standard QMV algebras) and we will try to generalize some results based 
on these "concrete" structures to abstract QMV algebras. We will show that 
some convenient weakenings of  important properties of the standard MV 
algebra based on the real interval [0, 1] hold also in the standard QMV 
algebras. In particular, standard QMV algebras turn out to be quasilinear, 
locally finite, and Archimedean. 

1. Q U A N T U M  MV A L G E B R A S  

Definition 1.1. A quantum M V  algebra ( Q M V  algebra) is a structure 
= (M, O,  *, 1, 0), where M is a nonempty set, 0 and 1 are constant 

elements of M, �9 is a binary operation, and * is a unary operation, satisfying 
the following axioms [where a (3 b := (a* �9 b*)*, a @ b := (a G b*) (3 
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b, a n d a  ~ b 

(QMVI) 
(QMV2) 
(QMV3) 
(QMV4) 
(QMV5) 
(QMV6) 
(QMV7) 
(QMV8) 
(QMV9) 

(QMV10) 
(QMV11) 
(QMV12) 

:= (a 63 b*) �9 b]: 

( a O b )  G c  = a O ( b O c ) .  
a O 0  = a .  
a O b = b G a .  
a O 1  = 1 .  
( a * ) *  = a .  

0* = 1. 
a O a *  = 1. 
a ~ (b @ a) =a .  
(a @ b) @ c =  (a @ b) @ (b @ c). 
a G (b @ (a O c)*) = (a O b) @ (a O (a O c)*). 
a O ( a *  @ b ) = a |  
(a* O b) @ (b* O a) = 1. 

We assume 63 to be more binding than O. (QMV8) and (QMV9) repre- 
sent a weak formulation of the absorption and of the associativity laws, 
respectively. Generally, @ and tY are not lattice-theoretic operations. 
(QMVI0) and (QMVI 1) represent a kind of conditional distributivity law of 
�9 over @. 

Definition 1.2. An MV algebra is an algebraic structure J/t = (M, G, 
*, 1, 0) that satisfies (QMV1)-(QMV7) and the following condition: 

(LA) (a @ b*) �9 b = (b 63 a*) �9 a (Lukasiewicz axiom). 

As proved in Chang (1957), any MV algebra is a QMV algebra. 

Definition 1.3. Let 3/[ be a QMV algebra. For all a, b ~ M 

a < b  iff a = a  @ b  
i 

Example 1.1 (Standard MV algebra). Let [0, 1 ] be the unit real interval. 
For all a, b E [0, 1], let 

a �9 b := Min({a + b, 1 }) (truncated sum) 

and 

a* : - -  1 - a  

The structure ~tEo, l I = ([0, 1], (~, *, 1, 0) is an MV algebra, called standard 
MV algebra. It turns out that the relation -< coincides with the restriction to 
[0, 1] of the usual order of R. Consequently, ~t0,q is linear, i.e., Va, b E 
[0, 1]: a < bor  b <_a. 

It tums out that a 63 b = Max({a + b - 1, 0}), a @ b = Min({a, b}), 
a n d a  ~ b = Max({a,b}). 
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Example 1.2 (Standard QMV algebra). Let E(~)  be the class of all 
effects of a Hilbert space ~ .  E(~)  coincides with the class of all bounded 
linear operators between 0 and 1, where 0 and I are the null and the identity 
operator, respectively. The operation @ is defined as follows, for any E, F 

E(~):  

E +  F i f  E + F  ~ E ( ~ )  
E �9 F := otherwise 

where + is the usual operator-sum. 

E * : =  1 - E  

One can prove (Giuntini, n.d.) that the structure %(~) = (E(~), @, *, i, 0) 
is a QMV algebra, called standard QMV algebra. The structure %(~), how- 
ever, is not an MV algebra, since it violates the crucial axiom (LA), which 
is responsible for the lattice-theoretic behavior of the operations @ and | 
of an MV algebra. 

It turns out that the relation < coincides with the usual partial order of 
%(~), induced by the class of all density operators of ~ .  Moreover, 

and 

E @ F =  
E if E < F  

otherwise 

~E if F < E  
E~J F= 

IF otherwise 

The class of all kl  (where k ~ [0, 1]) determines a subalgebra of %(~), 
which is isomorphic to the standard MV algebra. 

Let (M, @, *, 1, 0) be a QMV algebra. One can prove the following 
theorems (Giuntini, n.d.). 

Theorem 1.1. The following properties hold: 

(i) a G b = b ( 3 a .  
( i i)  a ( 3 ( b ( 3 c )  = ( a ( 3 b ) ( 3 c .  

( i i i )  a ( 3 a *  = 0. 
(iv) a ( 3 0  = O. 
(v) a ( 3 1  -- 1. 

(vi) a @ 1 = a = 1 @ a. 
(v i i )  a @ 0 = 0 = 0 @ a. 

(v i i i )  a = a ~ a. 
(ix) (a O3 b)* = a* ~ b*. 
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Theorem 

Theorem 

(i) If a 
(ii) If a 
It should 

b ~ b  @ a. 

Theorem 

(x) (a @ b)* = a *  @ b*. 
(xi) I f a _ < b ,  t hena  = b  @ a. 

It should be noticed that, in general, a = b @ a does not imply a = 
a @ b .  

Theorem 1.2. The following properties hold: 

(i) I f a O b  = 0, t hena  = b = 0. 
(ii) I f a ( 3 b  = 1, t hena  = b = 1. 

(iii) I f a  @ b = 0 ,  t h e n a = b =  0. 
(iv) I f a  @ b = 1, t hena  = b = 1. 

Theorem 1.3 (Cancellation law). For any a, b, c E M: if a G c = b �9 
c, a < c*, and b "< c*, then a --- b. 

Theorem 1.4. If a < b, then a* �9 b = 1. 

It should be noticed that, in general, a* �9 b = 1 does not imply a < b. 

Theorem 1.5. The following properties hold: 

(i) If  a __< b, then b* < a*. 
(ii)  a ' < b i f f b  = b ~ a = a  ~J b. 

( i i i)  a ~ (b ~ a)  = a .  

1.6. (M, < ,  *, 1, 0) is an involutive bounded poset. 

1.7. The following properties hold: 

< b, then Vc ~ M: a @ c < b @ c (weak monotony of | 
< b, then Vc ~ M: a ~ c ~ b  ~ c (weak monotony of ~ ) .  
be noticed that, in general, a f~ b ~< a, a ~ a ~ b, and a @ 

1.8 (Monotony of G and (3). The following properties hold: 

(i) Ifa__<b,  thenVc e M : a O c < b O c .  
(ii) I f a < b ,  thenVc ~ M : a ( 3 c < _ _ b ( 3 c .  

(iii) I f a < b a n d c < d ,  t h e n a O c ! b O d .  
(iv) I f a  < b a n d c < d ,  t h e n a Q c - < b ( 3 d .  

Theorem 1.9. The following properties hold: 

(i) a ( 3 b < a .  
(ii) a <_ a O b. 

(iii) a ( 3 b < a  ~ b , a ( 3 b < _ _ b  @ a. 
(iv) a ~ b < a O b ,  b ~ a < a O b .  
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Theorem 1.10. The following conditions are equivalent: 

(i) dA is an MV algebra. 
(ii) Va, b E M : I f a * O b  = 1, t hena  < b. 

Corollary 1.1. If dA is a linear (or totally ordered) QMV algebra, then 
dA is an MV algebra. 

2. QUASILINEAR AND WEAKLY LINEAR QMV ALGEBRAS 

In this section, we will introduce the notions of quasilinearity and weak 
linearity. It turns out that these two notions collapse into linearity whenever 
restricted to the class of all of MV algebras. We will prove that the equational 
class of all QMV algebras (~dAY) strictly includes the equational class 
generated by the class of all weakly linear QMV algebras [HSP(WLQMV)].  
Finally, we will show that HSP(WLQMV) strictly includes the equational 
class generated by the class of all quasilinear QMV algebras [HSP(QLQMV)]. 
As to MV algebras, Chang (1957) proved that dAY = HSP(LMV), where 
dAY is the (equational) class of all MV algebras and HSP(LMV) is the 
variety generated by the class of all linear (=  totally ordered) MV algebras. 

Definition 2.1. A QMV algebra dA = (M, O, *, 1, 0) is said to be 
quasilinear (or quasi-totally ordered) iff Va, b E M: if a ~ b, then a @ b 
= b .  

In other words, a QMV algebra At is quasilinear iff the following holds: 

a @ b =  { ;  if a-<b_ 
otherwise 

One can easily check that an MV algebra dA is quasilinear iff dA is 
linear. Since we know that there are MV algebras that are not linear, we can 
conclude that not every QMV algebra is quasilinear. Both the standard MV 
algebra and the standard QMV algebra are quasilinear. 

Lemma 2.1. Let dA be a QMV algebra. The following conditions are 
equivalent: 

(i) dA is quasilinear. 
(ii) Va, b E M : i f a O b : ~  1, t hena  < b * .  

(iii) Va, b , c  E M : i f a O c  = b O c  r 1, t hena  = b. 

The notion of linearity can be furtherly weakened as follows. 

Definition 2.2. A QMV algebra dA is said to be weakly linear iff Va, b 
E M : a  @ b = b o r b  ~ a = a .  
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By the cancellation law, a QMV algebra is weakly linear iff Va, b: a 
�9 b* = 1 or a* �9 b = 1. Clearly, any MV algebra is weakly linear iff it is 
quasilinear iff it is linear. Every quasilinear QMV algebra is weakly linear, 
but not the other way around (as a counterexample see the QMV algebra 
~wt of Fig. 2). 

Theorem 2.1. HSP(WLQMV) C 9~./~. 

Proof In order to prove the theorem we will show that the equation 

[ ( a O b G b )  @ ( a O b *  Q b * ) ] * O a  = 1 (*) 

holds in every weakly linear QMV algebra, but fails in a particular QMV 
algebra. 

Let .kt be a weakly linear QMV algebra. Then, b (3 b = 0 or b* Q b* 
= 0. Suppose b G b = 0. Then, 

lhs = [a @ (a G b* (3 b*)]* G a = a * O a  = 1 

where lhs denotes the left-hand side of the equation (*). The proof is similar 
f o r b * @ b *  = 0 .  

We now prove that (*) does not hold in 9~./I/t~. Let us consider the 
orthomodular lattice ~10 (Fig. 1). As proved in Giuntini (n.d.), every ortho- 
modular lattice can be thought of as a QMV algebra, by taking �9 as the sup 
(11) and * as the orthocomplement • 

Thus, 

lhs = [a II (b [~ b)] @ [a U (b • F-Ib• • L2 a 

= [(a l i b )  @ (a kl b*)]* U a 

= ( 1  ~ 1 ) * U a = a ~ l  �9 

1 

�9 a •  b-L-o c-Lo �9 d.l- 

o 
Fig. 1. ~lO. 
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Table I. 

@ 

a a 1 
a b 1 
a b* 1 
a* a* b 
a* b 1 
a* b* b 
b b 1 
b a 1 
b a* 1 
b* b* a 
b* a 1 
b* a* b 

Theorem 2.2. HSP(QLQMV) C HSP(WLQMV).  

P r o o f  It suffices to show that the equation 

( a * O a * )  f~ ( a O a )  = (a* ~ a) O ( a *  f~ a) (**) 

holds in every quasilinear QMV algebra, but fails in a particular weakly 
linear QMV algebra. 

Let At be any quasilinear QMV algebra. Two cases are possible: (i) a* 
<__ a; (ii) a* ~ a. 

(i) B y T h e o r e m  1.4, a O a  = 1 ; h e n c e l h s  = (a* O a*) @ 1 = a* O 

a* = rhs. 

(ii) By Theorem 2.1, a* �9 a* = 1, so that (a* @ a) = a; thus, lhs = 

a O a = rhs. 

We now prove that (**) does not hold in the weakly linear QMV algebra 
Atwt- In Atwt, the operation ~ ,  apart the obvious conditions, is defined as in 
Table I. Atw~ can be represented as in Fig. 2. One can check that Atw~ is a 
weakly linear QMV algebra. However, Atwt is not quasilinear, for a* f~ a 
= ( a * O a * )  @ a  = b G a  = (a* @b*)*  = b*. 

The equation (**) does not hold in Atwt for lhs = b | 1 4= a = b* �9 

b* = rhs. �9 

Open Question:  Are HSP(QLQMV) and HSP(WLQMV) finitely 
based? 

3. LOC ALLY F I N I T E  QMV A L G E B R A S  

In this section we will introduce the notions of locally  f in i t e  and Archi -  

medean  QMV algebras and we will generalize some corresponding results 
of MV algebras. 
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1 

I 
b / \  

a a* 

b* 

1 
0 

Fig. 2. ,ktw/. 

Definition 3.1. Let  AI be a Q M V  algebra.  Let  us define the fo l lowing  
operat ions,  for all a ~ M and for all n ~ N:  

(i) 0 . a  = 0, (n + 1 ) . a  = n . a  �9 a. 
(ii) a ~ = 1, a n+l = (a n) Q a .  

Definition 3.2. The order of  an e lement  a [briefly, ord(a)] is the least  
integer m, if  it exists,  s.t. m ' a  = 1. I f  such an integer  does not exist,  ord(a) 

Clearly:  (n .a)*  = (a*)"; (an) * = ( n ' a * ) ;  m . ( n . a )  = ( m ' n )  O) a; a m+n 
= (a) m (3 (a)~; a ('n+") = (am) n. 

Theorem 3.1 (Giuntini ,  n.d.). Let  ~ t  be a Q M V  algebra.  The fo l lowing 
condi t ions are equivalent:  

(i) b = b G a * .  
(ii) a @ b = 1. 

(iii) a = a O b * .  
(iv) b @ a = 1. 

Let  us first recall  a general  theorem concerning Q M V  algebras.  

Theorem 3.2. Let  J~ be a Q M V  algebra.  I f  a | b = 1, then Vn E N:  
a n ~ b n = 1. 

Proo f  Let us suppose  that a @ b = 1. By Theorem 3.1, b = b G a*. 
First  of  all, we prove that a" UI b -- 1. 
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By Theorem 3.1, it suffices to show that b = b �9 (an) * = b 0 (n 'a*) .  
We have 

b O ( n ' a * )  = b O a * G ' - "  G a *  
" v -  J 

n t i m e s  

= ( b O a * ) O ~ * O ' " O a ~  

n -  1 t i m e s  

= b O . . .  �9 (Th. 3.1) 
Xt'- 

n -  1 t i m e s  

I 

= b o a *  

= b  

Thus, a n O  b = 1. By Theorem 3.1, we have that b ~ a n -- 1. Thus, by 
the previous argument, b n @ a n = 1, so that, by Theorem 3.1, a n ~ b n = 1. �9 

Theorem 3.3. Let ~ be a locally finite Q M V  algebra. If  ord(a (3 b) < 
0% t h e n a O b - -  1. 

Proof  By hypothesis, 3n e N s . t . n .  (a (3 b) = 1. Hence (a* �9 b*) n 
= 0. By (QMV12),  (a* O b * )  t~ (a + b) = 1. By Theorem 3.2, (a* �9 
b*) n t~ (a + b) n = 1. Since (a* �9 b*) n = 0, we obtain that (a �9 b) n = 1. 
By Theorem 1.2(ii), we can conclude that a �9 b = 1. �9 

By Theorem 3.3, it follows that '~'a e M: if ord(a) > 2, then ord 
(a (3 a) = w. 

Definition 3.3. A Q M V  algebra is said to be locally finite iff Va E M 
s . t . a  v ~ 0 , 3 n  ~ N s . t . n . a  = 1. 

Theorem 3.4. For any Hilbert space ~ ,  the QMV algebra %(~)  of  all 
effects o f  ~ is locally finite. 

Proof  Let us suppose, by contradiction, that 3E  ~ E ( ~ )  s.t. E v ~ 0 and 
Vn E N: n .  E :# i. An easy induction shows that 

Vn ~ N : E +  . - .  + E = n . E ' <  1 
k. 2 

"t,C- 
n t i m e s  

Since E ~ O, there exists a density operator D s.t. Tr(ED) = X @ 0. Thus, 
3k e N s.t. kX > 1. By hypothesis and the induction argument, we have that 

E + . . . + E = k . E <  1 
k. J "V 

k t i m e s  
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Thus, 

Tr(D(E + . . .  + E)) = k Tr(DE) > 1 

Contradiction. �9 

Theorem 3.5. Every locally finite QMV algebra At is weakly linear. 

Proof We have to prove tha tVa ,  b E M : a * O b  = 1 o r a O b *  = 
1. Let suppose that a | b* 4: 1. Then, a* Q b r 0. Since At is locally finite, 
ord(a* (3 b) < ~. By Theorem 3.3, we obtain that a* G b = 1. �9 

As a corollary we have that every locally finite MV algebra is linear. 
Since we know that there are linear MV algebras which are not locally 

finite, we can conclude that not every weakly linear QMV algebra is 
locally finite. 

Definition 3.4. A QMV algebra is said to be Archimedean iff Va, b: if 
Vn E N, n 'a  ~ b, then a (3 b = a. 

Theorem 3.6. Every quasilinear and Archimedean QMV algebra ~/[ is 
locally finite. 

Proof Let us suppose, by contradiction, that 3a E M s.t. a 4 : 0  and Vn 
E N: n. a 4: 1. We want to prove that n. a -< a*. Let suppose, on the contrary, 
that n.a  ~Z a*. Since At is quasilinear, we have that (n.a) @ a* = a*. This 
means, by the cancellation law, that (n + 1) .a  = 1, which contradicts the 
hypothesis that ord(a) = ~. Thus, Vn E N: n" a < a*. Since At is Archimed- 
ean, we can conclude that a = a (3 a* = 0, contradiction. �9 

Open  Question:  Is every weakly linear and Archimedean QMV algebra 
locally finite? 

Theorem 3.7. Every locally finite QMV algebra is Archimedean. 

Proof Let a, b ~ M and let us suppose that Vn ~ N: n. a < b. If  a = 
0, then the theorem is proved. Thus, we can suppose that a ~ 0. Then, since 
At is locally finite, 3n e N s . t . n . a  = 1. This implies b = 1, so that a = 
a ( 3 1  = a ( 3 b .  �9 

Corollary 3.1. The standard QMV algebras are Archimedean. 

Summing up: 

MV Algebras 

Linear r Quasilinear r Weakly Linear 
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HSP(WLMV) = HPS(LMV) = A(~V 

Archimedean + Linear ~:~ Locally Finite ~ Linear 
II 

Archimedean 

QMV Algebras 

Linear ~ Quasilinear ~ Weakly Linear 

HSP(QLQMV) C PS(WLQMV) C ~ t ~  

Weakly Linear 
It 

Archimedean + Quasilinear ~ Locally Finite :~ Quasilinear 
u 

Archimedean 

Open Question: 
? 

Archimedean + Weakly Linear ~ Locally Finite 

REFERENCES 

Chang, C. C. (1957). Algebraic analysis of many valued logics, Transactions of the American 
Mathematical Society, 88, 467-490. 

Chang, C. C. (1958). A new proof of the completeness of Lukasiewicz axioms, Transactions 
of the American Mathematical Society, 93, 74-80. 

Dalla Chiara, M. L., and Giuntini, R. (n.d.). Partial and unsharp quantum logics, Foundations 
of Physics, 24, 1161-1177. 

Foulis, D. J., and Bennett, M. K. (n.d.). Effect algebras and unsharp quantum logics, Foundations 
of Physics, to appear. 

Giuntini, R. (n.d.). Quantum MV algebras, preprint. 
Giuntini, R., and Greuling, H. (1989). Toward a formal language for unsharp properties, 

Foundations of Physics, 20, 931-935. 
K6pka, E, and Chovanec, E (1994). D-posets, Mathematica Slovaca, 44, 21-34. 


